Managing trade-offs in climate-smart landscapes: A global analysis at multiple levels

Bruno Locatelli, Emilia Pramova, Florie Chazarin, Giacomo Fedele

Session L3.4 Climate-smart landscapes, watersheds and territories

Global Science Conference
March 16-18, 2015
Le Corum, Montpellier France
Climate-smart landscapes

- Managing for joint adaptation and mitigation outcomes at the landscape scale
 - Adaptation
 - for people (e.g. food security, flood risk reduction with watershed management)
 - for agriculture (e.g. better water management)
 - for ecosystems (e.g. landscape connectivity)
 - Mitigation
- Growing interest in exploring how A and M can be pursued simultaneously
 - win–win options?
- However, concerns about:
 - feasibility of implementing A and M jointly
 - possible drawbacks of a ‘forced marriage’
Linkages between adaptation and mitigation in landscape management

What do we know?

What is being done at the local level?

What is being done at the global level?
Conceptualization #1

Objectives \(\rightarrow \) Outcomes

\(x \): any objective

\(X_1, X_2 \): Adaptation or Mitigation

Joint outcomes

\[x \rightarrow X_1 \]
\[x \rightarrow X_2 \]
Ex: Soil management for resilient agriculture and carbon storage in soil

Ex: Forest conservation for ecosystem resilience, livelihood adaptation and emission reductions
Conceptualization #2

Objectives → Outcomes

\((x_1, x_2: \text{Adaptation or Mitigation})\) → \((X_1, X_2: \text{Adaptation or Mitigation})\)

Coincidence

\(x_1 \rightarrow X_1 \rightarrow X_2\)
Example project

- Adaptation project in Colombia:
 - resilient agricultural practices
 - livelihood diversification
 - ecosystem restoration with flood-resistant trees for reducing flooding downstream

 “Reducing Risk and Vulnerability in Region of La Depresion Momposina, Colombia”

- expected outcomes likely to result in increased carbon storage in soils and trees (e.g. soil restoration, agroforestry and reforestation).
Examples

Conserving carbon in forests also protects adaptation ecosystem services (e.g. watershed protection)

Carbon forest plantations may reduce access to cropland and increase vulnerability or food insecurity of local communities

Agriculture adaptation can reduce the need to convert forests into new agricultural lands (less emissions)

Agricultural adaptation can increase emissions (e.g. nitrogen fertilization, energy-intensive irrigation)
Funding streams are labelled as either A or M

Interview results:
- Do funds provide guidance on how to integrate A and M?
 - 89% no
- Do templates for project description integrates A and M?
 - 100% no
How do projects consider the other goal?

More mitigation projects consider adaptation than the contrary.
Conceptualization #3

Objectives → Outcomes
(x1, x2: Adaptation or Mitigation) → (X1, X2: Adaptation or Mitigation)

Interactions
x1 → X1
x2 → X2
Examples of arguments in favor of integrating A and M

Adding adaptation objectives to a mitigation project can increase project success:
less climate risk, more carbon permanence, more local legitimacy, gold certification (CCBA)

Adding mitigation objectives to an adaptation project can increase adaptation success:
carbon funding, donor interest.

Other arguments:
Holistic approach.
Fairness and justice.
Cost efficiency.

Complexity.
Distinct targets.
Cost inefficiency.
Policy implications

Objectives
(x₁, x₂: Adaptation or Mitigation, x: any objective) → Outcomes
(X₁, X₂: Adaptation or Mitigation)

Joint outcomes
x → X₁ → X₂
Opportunities for mainstreaming adaptation and mitigation in agricultural and forest policies

Coincidence
x₁ → X₁ → X₂
Opportunities for improving policy coherence (e.g. avoiding that A policies increase emissions)

Interactions
x₁ → X₁ → X₂
Opportunities for policy integration: addressing A and M together can improve both outcomes
Thank you!
Further reading

Pour en savoir plus

Para saber más

