

Global Science Conference

March 16-18, 2015 Le Corum, Montpellier France

Building Climate Smart Agriculture for the 21st Century & Beyond

Charles Walthall

Jerry Hatfield

Sally Schneider

Mark Boggess

USDA Agricultural Research Service

Montpellier

March 16-18, 2015

Agriculture Marches On:

- Industrial Revolution: Mechanization
 - Large areas Fast!
- "Green Revolution"
 - Crop genetics focus Continues!
- Information Revolution: Precision agriculture
 - Spatial & temporal variability
 - Yields & limiting factors
- What's next??

Challenges to *intensify* production still exist.....now.....

Climate Change & Agriculture: Effects & Adaptation* Key Messages

- Climate change poses new challenges
- Climate more of a decision-making criteria adds greater uncertainty
- All agricultural systems will be affected to some degree
 - Yield reductions, production cost increases
- Soil, water, ecosystem services will be affected
- Extreme events impact significant
- Decision-making for adaptation is complex
 - Economics, policy, abiotic & biotic effects, physical & social scales, risk management.....
- Research: Genetics + Management
 Practices

Research to Build Agricultural Resilience: Vulnerability

- Understand Potential Exposures*
 - Focus on extremes as well as mean changes
- Understand <u>Sensitivities*</u>
 - Define critical thresholds & interactions
- Enhance <u>Adaptive Capacity*</u>
 - Resilient systems: <u>Climate-ready crops & production systems</u>

*Vulnerability = (exposure + sensitivity - adaptive capacity)

G x E x M: Departure From Classic G x E Interaction

- Genetics x Environment x Management
 - Genetics: Variety, breed, or animal haplotype
 "Potential"
 - © Environment: Stress effects on agriculture "What cannot be controlled"
 - Management: Production practices
 "What can be controlled"

An Alternative to Science Reductionist Approach

- Highlight the effects of <u>climate variability on the</u> <u>environment factor</u>
- Highlight opportunities for <u>management to optimize</u> <u>performance of genetic resources under varying</u> <u>environmental conditions</u>
- Enhances problem solving
 - Which is the limiting factor: G? E? M?
 - What can we do about it?
- Producers view

Yield Gap Analysis

Challenge: Increase Yields Sustainably

- Satisfy human needs* for food, feed, and fiber, & contribute to biofuel
- Enhance environmental quality & the resources base
- Sustain economic viability of agriculture
- Enhance the quality of life for farmers, farm workers, & society as a whole

* Quantity & Quality

G x E: Phenotypic data

- Link animal/crop/variety development & choice with
 - Current environment
 - Projected <u>changes</u> of environment
 - Means & extremes of environment
 - Abiotic & biotic stresses

- Yield/Production
- Economics
- Environment
- Quality of life

G x M: What genotypes respond well to management practices?

- Link crop/variety development & choice with
 - Soil management practices
 - Water management
 - Pest & pathogen management
 - Timing of planting
 - Cover crops & crop rotations
 - Erosion & conservation management
 - Nutrient management

- Yield/Production
- Economics
- Environment
- Quality of life

G x M: What genotypes respond well to management practices?

- Link animal breed or haplotype choice with
 - Nutrition
 - Health
 - Pest & pathogen management
 - Housing
 - Production system
 - Nutrient management

- Yield/Production
- Economics
- Environment
- Quality of life

E x M: How do we separate management effects from environment?

- Link choice of management & environment
 - Reduced emissions, runoff
 - Efficient input application
 - Method
 - Temporal & spatial decisions
 - Production system/Housing

- Yield/Production
- Economics
- Environment
- Quality of life

Sustainable Agriculture & Soil Quality/Soil Health

Soil Health management for

"Soil as a living entity"

Crop yield

Indicators & indices?

- Ecosystem functions
- Reduced risks to health

Soil Health: physical, chemical, biological

What organisms? What are their functions/roles?

Management: Fertilizers

- Inorganic
- Organic

Promising signs for sustainability....

- O Liquid
- © Encapsulated/slow release
- Innoculants
- Paired Innoculant-crop combinations
- Other soil-biology oriented: biotic fertilizers

Why do these work? How do these work?

How do we fully realize the genetic potentials of new crop varieties for sustainable agriculture?

- Mounting evidence points to benefits of managing soil biology component of soil health
- © Crop <u>Genetics</u> + <u>Management Practices</u>
 - Nutrient Management Focus on Soil Biology

The Next Revolution for Agriculture?

Adaptation: Decision Support via Decision Trees?

Options...

What are the model, forecast, and data needs at each decision point?

A Way Forward

- Genetics x Environment x Management
 - Interactions
 - Cross/Trans Disciplinary
 - Matches producer decision-making
 - Yield gap focus
- Management: soils
 - Soil biology

Collaborations are essential.....

Charles L. Walthall PhD

Natural Resources & Sustainable Agriculture Systems Research
USDA Agricultural Research Service
Office of National Programs
5601 Sunnyside Avenue
Room 4-2282
Beltsville, MD 20705-5140
charlie.walthall@ars.usda.gov
301-504-4634

