Building Climate Smart Agriculture for the 21st Century & Beyond

Charles Walthall
Jerry Hatfield
Sally Schneider
Mark Boggess
USDA Agricultural Research Service

Montpellier
March 16-18, 2015
Agriculture Marches On:

- **Industrial Revolution: Mechanization**
 - Large areas – *Fast!*

- **“Green Revolution”**
 - Crop genetics focus – *Continues!*

- **Information Revolution: Precision agriculture**
 - Spatial & temporal variability
 - Yields & limiting factors

- **What’s next??**

Challenges to *intensify* production still exist….and……now……
Climate Change & Agriculture: Effects & Adaptation* Key Messages

- Climate change poses new challenges
- Climate more of a decision-making criteria – adds greater uncertainty
- All agricultural systems will be affected to some degree
 - Yield reductions, production cost increases
- Soil, water, ecosystem services will be affected
- Extreme events impact significant
- Decision-making for adaptation is complex
 - Economics, policy, abiotic & biotic effects, physical & social scales, risk management.....

Research: Genetics + Management Practices
Research to Build Agricultural Resilience: Vulnerability

- Understand Potential *Exposures*
 - Focus on extremes as well as mean changes
- Understand *Sensitivities*
 - Define critical thresholds & interactions
- Enhance *Adaptive Capacity*
 - Resilient systems: *Climate-ready crops & production systems*

Vulnerability = (exposure + sensitivity - adaptive capacity)

(IPCC)
G x E x M: Departure From Classic G x E Interaction

- Genetics x Environment x Management

- Genetics: Variety, breed, or animal haplotype
 “Potential”
- Environment: Stress effects on agriculture
 “What cannot be controlled”
- Management: Production practices
 “What can be controlled”
An Alternative to Science Reductionist Approach

- Highlight the effects of *climate variability on the environment factor*
- Highlight opportunities for *management to optimize performance of genetic resources under varying environmental conditions*
- Enhances problem solving
 - Which is the limiting factor: G? E? M?
 - What can we do about it?
- *Producers view*

Yield Gap Analysis
Challenge: Increase Yields Sustainably

• Satisfy human needs* for food, feed, and fiber, & contribute to biofuel
• Enhance environmental quality & the resources base
• Sustain economic viability of agriculture
• Enhance the quality of life for farmers, farm workers, & society as a whole

* Quantity & Quality
G x E: Phenotypic data

• Link animal/crop/variety development & choice with
 – *Current* environment
 – *Projected changes* of environment
 – Means & *extremes* of environment
 – Abiotic & biotic stresses

Sustainability:
• Yield/Production
• Economics
• Environment
• Quality of life
G x M: What genotypes respond well to management practices?

- Link crop/variety development & choice with:
 - Soil management practices
 - Water management
 - Pest & pathogen management
 - Timing of planting
 - Cover crops & crop rotations
 - Erosion & conservation management
 - Nutrient management

Sustainability:
- Yield/Production
- Economics
- Environment
- Quality of life
G x M: What genotypes respond well to management practices?

- Link animal breed or haplotype choice with
 - Nutrition
 - Health
 - Pest & pathogen management
 - Housing
 - Production system
 - Nutrient management

Sustainability:
- Yield/Production
- Economics
- Environment
- Quality of life
E x M: How do we separate management effects from environment?

- Link choice of management & environment
 - Reduced emissions, runoff
 - Efficient input application
 - Method
 - Temporal & spatial decisions
 - Production system/Housing

Sustainability:
- Yield/Production
- Economics
- Environment
- Quality of life
Sustainable Agriculture & Soil Quality/Soil Health

- Soil Health management for
 - Crop yield
 - Ecosystem functions
 - Reduced risks to health

- Soil Health: physical, chemical, biological

 What organisms? What are their functions/roles?
Management: Fertilizers

- Inorganic
- Organic
- Liquid
- Encapsulated/slow release
- Innoculants
- Paired Innoculant-crop combinations
- Other soil-biology oriented: biotic fertilizers

Promising signs for sustainability....

Why do these work?
How do these work?
How do we fully realize the genetic potentials of new crop varieties for sustainable agriculture?

- Mounting evidence points to benefits of managing soil biology component of soil health

- Crop Genetics + Management Practices
 - Nutrient Management Focus on Soil Biology

The Next Revolution for Agriculture?
Adaptation: Decision Support via Decision Trees?

What are the model, forecast, and data needs at each decision point?
A Way Forward

- **Genetics x Environment x Management**
 - Interactions
 - Cross/Trans Disciplinary
 - Matches producer decision-making
 - Yield gap focus

- **Management: soils**
 - Soil biology

Collaborations are essential……