

A review of contributions that the System of Rice Intensification (SRI) can make to climate-smart agriculture

Norman Uphoff SRI-Rice, Cornell University Ithaca, NY 14853 USA

Montpellier

March 16-18, 2015

1. What Is <u>SRI/SCI</u>?

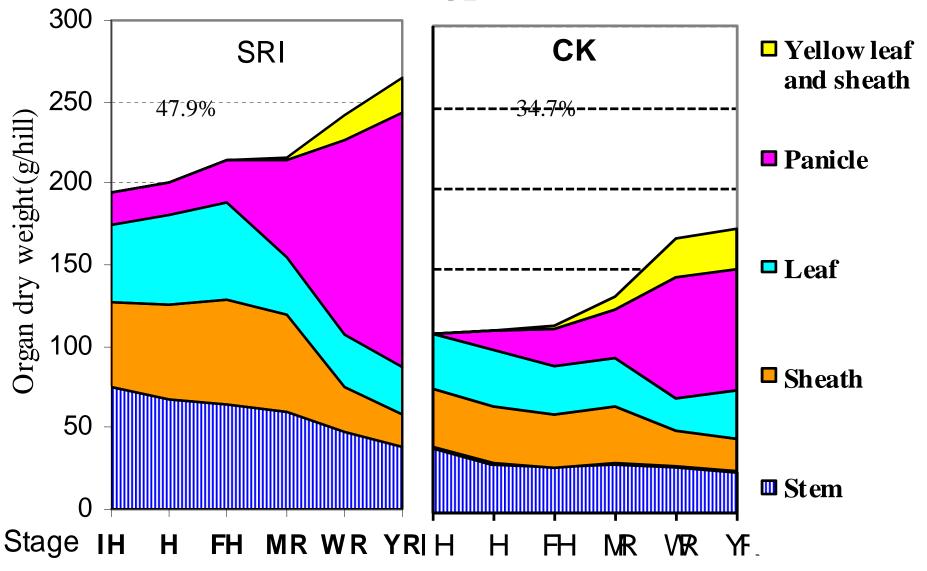
- SRI is a **management system** for rice and other crops changing how plants, soil, water and nutrients are handled -- to produce **more productive, more robust plants** from any given variety, i.e., to get better **phenotypes** from any particular **genotype**.
- SRI derives from decades of work with farmers and rice crops in Madagascar by Fr. Henri de Laulanié, S.J., who assembled a set of PRACTICES that could capitalize upon genetic potentials within both 'improved' and 'unimproved' varieties of rice plants.
- Now SRI is understood and presented in terms of **generalizable PRINCIPLES** that have solid support in agronomic science
- These practices include: the use of young seedlings, wider spacing, no continuous flooding of paddies, active soil aeration (an effect of mechanical weeding), and increased soil organic matter.
- The **RESULT** is enhancement of the health and functioning of **root systems** and more abundant, diverse **soil biota**

CLIMATE-SMAR

CUBA: Two plants of <u>same variety</u> (VN 2084) and <u>same age</u> (52 DAS) – different phenotypes from same genotype

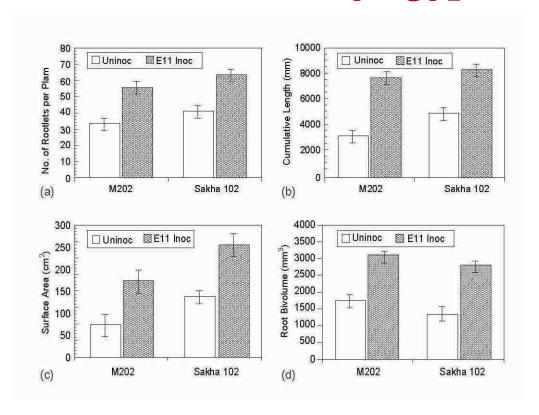
INDONESIA:
Stump of a rice plant
(modern variety)
grown under
SRI management -223 tillers & massive
root growth -- all
from a single seed

Panda'an, E. Java, 2009



IRAQ: Comparison trials at Al-Mishkhab Rice Research Station, Najaf

CHINA: Measured Phenotypical Differences with SRI


Non-Flooding Rice Farming Technology in Irrigated Paddy Field Dr. Tao Longxing, China National Rice Research Institute, 2004

2. What Benefits Can Be Achieved with SRI?

- 1. <u>Higher grain yields</u> 20-50%, even >100%
- 2. <u>Water savings</u> 30-50% reductions in irrigation
- 3. <u>Reduced costs of production</u> usually 10-20%
- 4. <u>Higher net farmer incomes</u> 50-100% or more
- 5. <u>Shorter crop duration</u> often 5-10 days or more
- 6. <u>Higher milling outturn</u> by 10-20%, due to fewer unfilled grains & less breakage during milling
- 7. <u>Greater resistance to pests and diseases</u> and <u>more tolerance of climatic stresses</u>

HOW are these effects achieved? No 'magic' – good agronomic practices mobilizing existing potentials and interaction of ROOTS & SOIL BIOTA

Positive interactions between <u>soil microbes</u> and <u>growth of roots</u> as shown by Egyptian research

Effects of inoculation with *Rhizobium leguminosarum* bv. trifolii E11 on root architecture of two rice varieties: (a) Rootlets per plant; (b) Cumulative root length (mm); (c) Surface area (cm²); and (d) Root biovolume (cm³). From: Y. G. Yanni et al., *Australian Journal of Plant Physiology*, 28, 845–870 (2001)

3. Why SRI Is <u>Climate-Smart Agriculture</u>

- Reduced water requirements higher crop water-use efficiency benefits both natural ecosystems and people in competition with agriculture for scarce water supplies
- <u>Less use of inorganic fertilizer</u> reactive N is "the third major threat to our planet after biodiversity loss and climate change" already returns are greatly diminishing
- <u>Less reliance on agrochemicals</u> for crop protection which enhances the quality of both soil and water
- <u>Buffering against the effects of climate change</u> drought, storms (resist lodging), cold temperatures
- Some reduction in greenhouse gases (GHG) CH_4 is reduced without producing offsetting N_2O emissions; also some reductions made in 'carbon footprint' with reduction, transportation and use of fertilizers

Evidence on water saving and productivity:

A meta-analysis of 29 published studies (2006-2013), with results from 251 comparison trials across 8 countries

```
Water use: SRI mgmt 12.03 million liters ha<sup>-1</sup>
Standard mgmt 15.33 million liters ha<sup>-1</sup>
SRI reduction in total water use = 22%
SRI reduction in irrigation water use = 35%
with 11% more yield: SRI 5.9 tons ha<sup>-1</sup> vs. 5.1 tons ha<sup>-1</sup>
(usually, SRI yield increases are greater than this)
Total WUE 0.6 vs. 0.39 grams/liter (52% more)
Irrigation WUE 1.23 vs. 0.69 grams/liter (78%more)
```

P. Jagannath, H. Pullabhotla and N. Uphoff, "Evaluation of water use, water saving and water use efficiency in irrigated rice production with CLIMATE-SRITYS. traditional management," <u>Taiwan Water Conservancy</u> (2013)

Agriculture

<u>Drought-resistance</u>: Rice fields in Sri Lanka 3 weeks after irrigation stopped because of drought -- conventionally-grown field is on left, and SRI field is on right-- same variety, same soil, same climate

Storm resistance
Adjacent rice fields
after being hit by
a tropical storm
in Dông Trù village,
Ha Noi province.
Vietnam

Same variety was used in both fields
-- on right, we see serious lodging; on left, no lodging

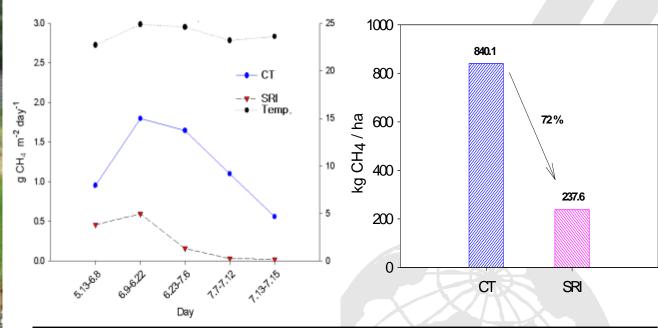
Disease and pest resistance in Vietnam:

Evaluation by National IPM Program – averaged data from on-farm trials in 8 provinces, 2005-06:

	Spring season		Summer season			
	SRI plots	Farmer plots	Differ- ence	SRI plots	Farmer Plots	Differ- ence
Sheath blight	6.7%	18.1%	63.0%	5.2%	19.8%	73.7%
Leaf blight				8.6%	36.3%	76.5%
Small leaf folder *	63.4	107.7	41.1%	61.8	122.3	49.5%
Brown plant hopper *	542	1,440	62.4%	545	3,214	83.0%
AVERAGE CHMATE SMART			55.5%			70.7%

Resistance to both biotic and abiotic stresses in Indonesia: fields hit by both a brown planthopper pest attack and by storm damage – the rice field on the left was managed with standard practices, while the field on right is <u>organic SRI</u>

Evaluations of GHG emissions


- Flooded rice paddies are a major source of CH₄
- Evaluation for GIZ in Mekong Delta of Vietnam found a significant 20% reduction in CH₄ and a 1.4% reduction (NS) in N₂O (Dill et al., 2013)
- A life-cycle analysis (LCA) in Andhra Pradesh, India found SRI management, compared to standard practices, reduced GWP emissions by >25% per ha, and by >60% per kg of rice produced (Gathorne-Hardy et al., 2013)
- Another Indian study found SRI methods lowered GWP per hectare by 28% (Jain et al., 2013) we are
 - not finding offsetting increases in N₂O

W,

Comparison of methane gas emission

Trootmont	Emission	CO ₂ ton/ha		
Treatment	CH ₄	N ₂ O	equivalent	
СТ	840.1	0	17.6	
SRI	237.6	0.074	5.0	

4. These changes in crop management (SCI) can also benefit <u>other crops</u>

- Development of stronger **root systems** and greater **soil biodiversity and biological activity** improves the productivity and CC robustness of many other crops, e.g.,
 - Wheat
 - Sugarcane
 - Finger millet
 - Tef (Ethiopia)
 - Legumes and many vegetables

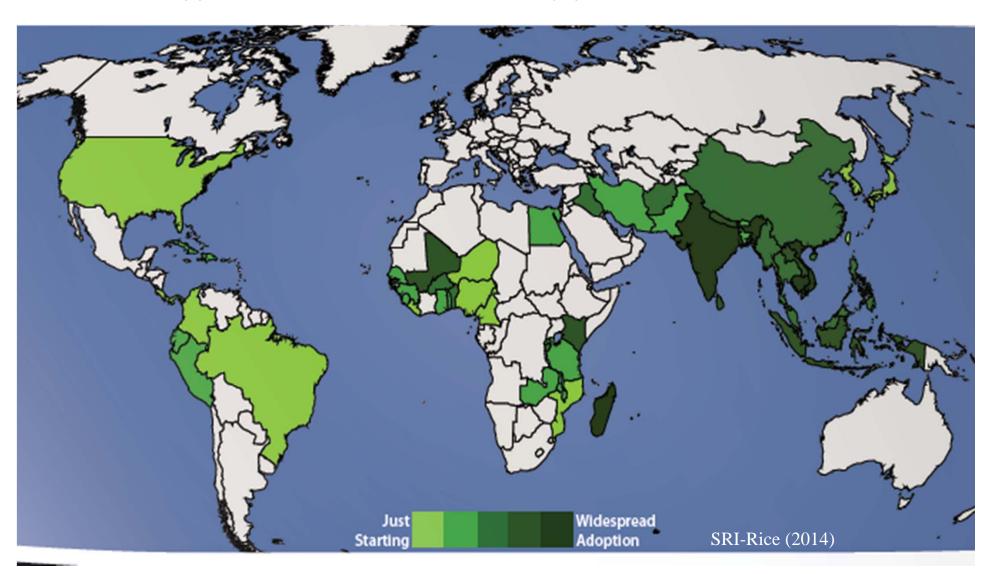
SWI wheat crop in Khagarla district, Bihar state of India – these wheat fields are same age and same variety

SSI sugarcane in Cuba at 10.5 months -yield estimated @ 150 t/ha

SSI sugarcane

CLIMATE-SMART

Agriculture


In India

Spread and Adoption of SRI

More than 10 million farmers are benefiting from the use of SRI methods in 55 countries (end of 2014) on 3.5-4.0 million hectares

5. Reservations and Qualifications?

- SRI has had reputation for 'labor-intensity' but this was compared to 'extensive' methods in Madagascar; usually SRI can <u>reduce labor</u>
- Only good for small scale? no longer true
 - various SRI practices can be mechanized
- SRI practices appear to be 'risky' -- but studies for GTZ (Cambodia) and IWMI (Sri Lanka) showed reductions in farmers' risks
- But SRI/SCI are still 'a work in progress' >
- so please "stay tuned" and help us!

Web page: http://sri.cals.cornell.edu/

Email: ntu1@cornell.edu [ntu-one]