

Climate-smart agriculture in South Asia: Opportunities and constraints in scaling out

Pramod Aggarwal, Arun Khatri-Chettri, Shirsath P. Bhaskar, M.L. Jat* and P.K. Joshi**

CGIAR Research Program on Climate Change, Agriculture and Food Security,
International Water Management Institute, New Delhi-110012, India
*CIMMYT, New Delhi-110012, India
**IFPRI, New Delhi-110012, India

South Asia: Home for 40% of World's Poor

- > 1.6 billion people, 2.4% of the world's land area and 17% of world's population
- Still has high growth rate of population
- Tremendous progress in last 4 decades
 - Food consumption increased from 1900 kcals to > 2500 kcals
 - Average GDP growth >6%
 - Little food imports now
- Yet, 1/4th of the world's hungry; 40% of the world's malnourished children and women
- Lagging in MDGs
- Agriculture important for livelihood security of > 50% population
- Projected to be very vulnerable to climatic risks

Source: World Bank, 2015

Climatic stresses are common in South Asia

High CV of rainfall in Pakistan; northwest and south India

Early signs of climate change: Rainfall trends in India for different seasons (1901-2003)

Different colors represent levels of significance

Source: IMD, 2010

Climate change and agriculture-South Asia is a major hotspot

- Climate change likely to reduce agricultural production by 10-50% by 2050 and beyond, if we do not start adapting now.
- Increased production variability due to more frequent droughts, floods, and heat events
- Large implications for intra- and inter-national trade.

Source: Erickson et al., 2012

Elevated tropospheric ozone can reduce the benefits of CO2 on crop yields (*high confidence*).

Source: IPCC-AR5 2014;

Bhatia et al. 2015 personal comm

Agricultural emissions from the region

Adapting South Asian Agriculture to Climate Change and Declining Resources: Need for CSA

- Increasing demand for (quality) food
- Increasing competition for resources
- Increasing degradation of resources
- Increasing climatic risks
- Increasing variability of global supplies, and prices

Addressing climate change and agriculture in South Asia

1. Make full use of untapped potential of currently available technologies

Invest in management of land and water resources, and input delivery and market linkage mechanisms

2. Identify and exploit potential benefits of climate change

3. Improved climatic services

Scaling-out weather -based agro-advisories

3. Improved climatic services

Innovative crop Insurance schemes for improved management of climatic risks

- 30 million insured farmers in India; linked to credit; most are dissatisfied with products and services
- Pilots in other countries

Innovations needed

- AEZ specific 'indices' for rainfall/ temperature
- 2. MRV schemes managed by farming communities
- 3. Bundling crop insurance with other financial instruments and risk mitigating technologies
- 4. Improved models for delivery- PPP models
- 5. Direct benefits trasnfer:110 million bank accounts in last 6 months

4: Maximize synergies among interventions 'Climate-smartness' of interventions

Intervention	Yield	CV	GHG emissions		Investment	Income
Higher inputs	↑	?	↑	?	↑	\leftrightarrow
Zero tillage	\leftrightarrow	\downarrow	\leftrightarrow	\downarrow	\	↑
Laser levelling	↑	\downarrow	\	\downarrow	↑	↑
Residue management	↑	\downarrow	\leftrightarrow	\downarrow	\leftrightarrow	↑
N sensors	\leftrightarrow	\leftrightarrow	\	\downarrow	\downarrow	↑
Tensiometers	\leftrightarrow	\downarrow	\	\downarrow	\leftrightarrow	↑
Climatic services	\leftrightarrow	\leftrightarrow	?	?	↑	↑
Crop insurance	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	↑	↑
Climate-smart						
village	1	\downarrow	\	\	?	1

Climate-smart villages: Integrated solutions leading

to higher income, resilience, adaptation and mitigation

Several initiatives; top-down approach; lack of synergy among interventions; limited capacity of stakeholders

Strategy

- Integrated farmer participatory approach
- Builds on local knowledge and plans
- Precision agronomy principlessensors
- Use of modern ICT tools
- Capacity strengthening and technology targeting

Key Interventions in a Climate-Smart Village

CLIMATE SMART VILLAGE / FARM

Weather smart

- · Seasonal weather forecasts
- · ICT based agro-advisories
- · Index based insurance
- Climate analogues

Water Smart

- · Aquifer recharge
- Rainwater harvesting
- Community management of water
- Laser leveling
- · On-farm water management

Carbon smart

- Agroforestry
- Conservation tillage
- Land use systems
- Livestock management

smart

Nitrogen

- Site specific nutrient management
- Precision fertilizers
- Catch cropping / legumes

Energy Smart

- Biofuels
- · Fuel efficient engines
- Residue management
- Minimum tillage
- Solar solutions for agriculture

Knowledge Smart

- · Farmer-farmer learning
- Farmer networks on adaptation technologies
- Seed & fodder banks
- Market info
- · Off-farm risk management-kitchen garden

CSVs: Initial evidence from field

Technology	Yield gain/loss (kg/ha)	Economic gains/loss (USD NR/ha)	Water saving (M3/ha)- for water smart practice	Energy Saving (MJ/ha)	Increase in NUE (as kg/kg)	Reduction in GHG (CO2-e kg/ha)
Zero tillage in wheat (without residue)	342	131	414	3040	1.44	1507 (from LCA)
Zero tillage with residue in wheat	468	190	550	2650	1.61	?
Permanent beds in maize/wheat	195	289	1650	?	1.33	?
Direct seeded rice	<u>+</u> 150	136	3000	?	-	420 (based on soil flux only)
Improved water management	375	97.51	405	?	1.40	-
Nutrient Expert in wheat	500	104	-	?	10	200
Laser leveling (RW system)	600	130	2500	?	?	330

Climate-smart villages: 'Growing' solar power as a remunerative crop

Source: T. Shah, IWMI

CCAFS

Progress/plans on CSVs in South Asia

5. Improved targeting of technologies and policies

What technologies and policies lighten the load for women in climate risk regions?

5. Improved targeting of technologies and policies: Do we need Seed banks to manage climatic risks?

- 1. Seed banks considered an important risk management/ adaptation strategy
- 2. Costs and logistics involved are large

5. Improved targeting of technologies and policies: CSA-enabled development plans- Prioritizing interventions

- Builds from bottom-up biophysical and socio-economic datasets
- Spatially explicit, integrated modeling framework
- Addresses climatic and socio-economic scenarios
- Supports multi-objective trade-off analyses
- Supports more informed decision making
 - What crops to cultivate;
 - Which CSA technologies and practices to invest in;
 - Where to target that investment, and
 - When those investments should be made.
 - NAPAs/ NAPs/NAMAs

6: Address simultaneously poverty, governance, institutions, and human capital which limit agriculture growth even today

Conclusions: Scaling-out CSA: Key ingredients

- 1. Scaling-out CSA- challenges similar to intensification
- Good evidence base: technology targeted for AEZs and farmer typologies – resources, priorities
- **Impact pathway:** key actors, partners, R4D.
- Business models: bundling interventions; institutional mechanisms: local govts; PPP
- Capacity strengthening of key actors: farmers, industry, planners,....
- Policy support
- 2. CSA has additional challenge since this is knowledge intensive

